Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 67(1): 68-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760445

RESUMO

Thyroid hormone (TH) has long been known to be essential for normal brain development in both humans and animals, and increasing evidence suggests that environmental components may disrupt TH signaling. In the present study, two-hybrid yeast bioassay and chemical analysis were used to evaluate and identify thyroid-receptor (TR) disruptors in water from the Guanting Reservoir, Beijing, China. Modified yeast bioassay showed that the water samples could affect TH signaling. The bioassay-derived amiodarone hydrochloride equivalents ranged from 33.8 ± 3.3 to 308.5 ± 31.8 µg/L. Solid-phase extraction was used to separate the organic extracts, which were subjected to bioassay and chemical analysis. The organic extracts significantly antagonized the TR, which accounted for >86.0 % of the total effects. Thus, organic extracts may play a major role in the TR-disruption activity of the water. Phenols, organochlorine pesticides, and phthalate esters were detected in the organic extracts. Chemical analysis and toxic-equivalent calculation showed that a major cause of the TR antagonism of the water was dibutyl phthalate (80.1 to 122.7 %).


Assuntos
Antitireóideos/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental , Água Doce/química , Poluentes Químicos da Água/análise , China
2.
Chemosphere ; 100: 139-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24355165

RESUMO

The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different ß-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced ß-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 µg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples.


Assuntos
Bioensaio/métodos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Hormônios Tireóideos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Água/química , Métodos Analíticos de Preparação de Amostras , Antitireóideos/toxicidade , Saccharomyces cerevisiae/metabolismo , Esterilização , Hormônios Tireóideos/agonistas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...